explainable_ai

From RAG to Riches: A Practical Guide to Building Semantic Search Using Embeddings and the OpenSearch Vector Database

From RAG to Riches: A Practical Guide to Building Semantic Search Using  Embeddings and the OpenSearch Vector Database

In this article, we delve into the evolution of search technologies, tracing the journey from the conventional keyword-based search methods to the cutting-edge advancements in semantic search. We discuss how semantic search leverages sentence embeddings to comprehend and align with the context and intentions behind user queries, thereby elevating the accuracy and relevance of search outcomes. Through the integration of vector databases such as OpenSearch, we illustrate the development of sophisticated semantic search systems designed to navigate the complexities of modern data sets. This approach not only delivers a more refined search experience but also enhances the precision of results by accurately interpreting the intent of user inquiries, representing a notable leap forward in the progression of search technology.

Explaining a Passenger Survival AI Model Using SHAP for the RMS Titanic

In 1912, the RMS Titanic hit an iceberg in the North Atlantic Ocean about 400 miles south of Newfoundland, Canada and sank. Unfortunately, there were not enough lifeboats onboard to accommodate all passengers and 67% of the passengers died. In this article, we walk through the use of SHAP values to explain, in a detailed manner, why an AI model decides to predict whether a given passenger will or will not survive.

Inside the Black Box: Developing Explainable AI Models Using SHAP

Explainable AI refers to the ability to interpret model outcomes in a way that is easily understood by human beings. We explore why this matters, and discuss in detail tools that help shine light inside the AI "black box" -- we wish to not just understand feature importance at the population level, but to actually quantify feature importance on a per-outcome basis.